

Demystifying RAM (Recycled Asphalt Materials)

Amy Epps Martin Texas A&M University

Disclaimers for Ongoing Work Txdot

The contents of this presentation reflect the views of the authors who are solely responsible for the facts and accuracy of the data presented herein and do not necessarily reflect the official views or policies of TxDOT. This presentation does not constitute a standard, specification, nor is it intended for design, construction, bidding, contracting, tendering, certification, or permit purposes. Trade names were used solely for information purposes and not for product endorsement, advertisement, promotions, or certification.

NCHRP

This investigation is being sponsored by the Transportation Research Board under the NCHRP Program. Data reported are work in progress. Contents of this research may have not been reviewed by the project panel of NCHRP, nor do they constitute a standard, specification, or regulation.

High RAM = Multiple Benefits

MANAGING ASPHALT PAVENENTS CONFERENCE AND TRADE SHOW MAY 15-17, 2023 * WACO, TEXAS

Each Materials Combination is UNIQUE

Asphalt Mixtures with High RAM or RBR (NAPA IS138)

MOTIVATION

- US in 2021
 - 432M tons HMA/WMA
 - 21.9% RAP
 - 95M tons RAP,
 - 0.6M tons RAS

CONCERN

- Workability
- Compaction

Performance w/Aging

- \$3.5B = materials savings
 - 1970s/1980s Oil Embargo
 - 1990s/2000s Oil Shock
 - Now ???
- 62M yd³ landfill space
- 2.6M metric tons CO₂

RAM = Reclaimed Asphalt Pavement (RAP) + Recycled Asphalt Shingles (RAS)

RBR = Recycled Binder Ratio

$$RBR = \frac{(Pb_{RAP} \times P_{RAP}) + (Pb_{RAS} \times P_{RAS})}{100 \times Pb_{total}}$$

- = binder content of the RAP
 - percentage of RAP by weight of mixture
 - binder content of the RAS
 - percentage of RAS by weight of mixture
 - binder content of the combined mixture

Virgin Aggregates

Balanced Mixture Performance is KEY

TxDOT Mixture Types/Specs/Max RAM & RBR @ Surface

Mixture Type	Description	TxDOT Spec	Max RAM	Max RBR
Dense	Traditional Dense-Graded	SS 3076 (Item 341)	15% FRAP 0% RAS	10%
Superpave	Superpave Volumetric	SS 3077 (Item 344)	20% FRAP 0% RAS	15%
Balanced	Superpave Volumetric with Balanced Rutting & Cracking Resistance	SS 3074	35% FRAP 5% RAS	30%
PFC	Permeable Friction Course for Drainage & Noise Reduction	SS 3079 (Item 342)	0%	0%
SMA	Stone-Matrix Asphalt for Rutting Resistance	SS 3080 (Item 346)	20% FRAP 0% RAS	15%
ТОМ	Thin Overlay Mixture to Restore Skid, Ride with Balanced Rutting & Cracking Resistance	SS 3081 (Item 347)	0%	0%

TxDOT Mix Design Comparison

Mixture Type	Volumetrics	Performance @ 7%AV
Dense	96% Density	S _T by IDT, <u>N@12.5 mm</u> RD by HWT,
(SS 3076)	VMA _{design}	%Stripping by Boil
Superpave	96% Density, DP	S _T by IDT, <u>N@12.5 mm</u> RD by HWT,
(SS 3077)	VMA _{design}	%Stripping by Boil
Delenand	OG^{0}	S _T by IDT, <u>N@12.5mm</u> RD by HWT, <i>CFE</i>
(SS 3074)	96% Density, DP	& CPR by $OT + CT_{Index}$ by IDEAL-CT,
(33 301 4)	design	%Stripping by Boil
PFC (A _s range)	78 or 82% Density	%Draindown, %Loss by Cantabro,
(SS 3079)		%Stripping by Boil
SMA (A _s range)	96%Density	RD @ 20k by HWT, N by OT,
(SS 3080)	VMA _{design}	%Draindown, %Stripping by Boil
TOM (min A _s)	96%Density	S _T by IDT, N@12.5mmRD by HWT,
(SS 3081)	VMA _{design}	N by OT, %Draindown

TxDOT BMD Implementation Effort

- To review, revise, & further develop
 Superpave BMD for Surface Mixtures with RAP
- Collaboration
 - TxDOT
 - TTI @ Texas A&M
 - CTR @ UT
 - CTIS @ UTEP

- TxDOT-Industry BMD Working Group
- Contractors
- Materials Suppliers
- 9 Field Projects, 33 Test Sections, 96 sublots
 - Varied Climates, Traffic Conditions
 - Focus on Different Mixture Adjustment Factors
- 2019-2022 Complete, 2022-2025 Ongoing

TXDOT BMD 2019-2022 Field Project Locations

- 2019: ATL
- 2020: SAT x2, YKM, ATL
- 2021: PAR, CHS
- 2022: SJT, SAT

TxDOT BMD 2019-2022

FACTORS	#	RAP	RAS	Binder Change	RA	WMA	Agg Qual	Mixture Type(s) & Other Notes
ATL FM3129	3	Х	Х	Х				SP-D (Fine)
SAT SL337	3	Х				Х	Х	SP-C, DG-C Control
SAT FM3009	3	Х		Х	Х	Х	Х	SP-D, some @ T _{low}
YKM SH71	4	Х		Х		Х	Х	SP-D, DG-D, TOM-C Control, some @ T _{low}
ATL US59	4	Х		Х		Х		SP-C, SMA-D Control, some @ T _{low}
PAR SH37	4	Х				Х		SP-C, DG-C
CHS US 70	3	Х		Х				DG-D, LAS
SAT SH85(2)	3	Х		Х	Х			SP-C, lime
SJT US 67	6	Х		XXX		Х	Х	SP-C, TR binder, rich RAP

BMD Implementation Effort

produce implementable BMD&A specification that balances engineering performance (rutting, cracking) & provides economic and environmental benefits

Test Projects

BMD Implementation Effort

produce implementable BMD&A specification that balances engineering performance (rutting, cracking) & provides economic and environmental benefits

Concepts for Discussion to Revise SS 3074

- Mix Design
- Trial Batch
- Production Acceptance
- Placement Acceptance-no changes
- Other Items

Mixture Testing

Rutting

- HWT
 - N_{12.5} ≥ 10k for PG64
 - N_{12.5} ≥ 15k for PG70
 - N_{12.5} <u>></u> 20k for PG76

• IDEAL-RT

- $RT_{Index} \ge 60$ for PG64
- $RT_{Index} \ge 65$ for PG70
- $RT_{Index} \ge 75$ for PG76

• Cracking

- OT: CPR < 0.45 (+ CFE > 1.0)
- IDEAL-CT: CT_{Index} ≥ 80, ≥ 50 after MTOA
- S_T: 85-200psi
- Aging
 - LMLC: STOA 2hr@T_{comp} [+ MTOA 20hr@95C]
 - RPMLC: Reheat to T_{comp}

Binder Testing

- DSR
 - PGH
 - Jnr, %R
 - G-R with aging
- Ductility (Poker Chip) ≥ 150%

- BBR
 - PGL
 - DTc
- FTIR
- XRF
- SARA

Concepts-Mix Design

- Meet Component Materials & Gradation requirements
- Meet Volumetric requirements
- Conduct IDEAL-RT & IDEAL-CT over range of asphalt binder contents
- Utilize Aging protocol for IDEAL-CT test
- Select (performance) optimum asphalt binder content
- Verify HWT & OT test for compliance
- Establish JMF-1

TXAP

Concepts-Trial Batch

- Perform IDEAL-RT & IDEAL-CT tests
- Verify HWT & OT tests for compliance? (time constraints)
- Establish JMF-2

Concepts-Operational Tolerances

- Define **operational tolerances** for performance
 - IDEAL-RT and IDEAL-CT for Trial Batch/JMF1 and from Current JMF
 - Tighter IDEAL-RT and IDEAL-CT for Contractor/TxDOT
- Contractor QC
 - IDEAL-RT & IDEAL-CT: 4 sublots per lot with n=1? RT and n=3? CT tests per sublot
 - HWTT & OT only if RT or CT fall below threshold
- TxDOT
 - Accept contractor results OR

IDEAL-RT & IDEAL-CT: 1 sample per 5 lots (random) with n=1? RT and n=3? CT tests each

HWTT & OT only if RT or CT fall below threshold

Concepts-Other Items

Component Materials

- Allow use of unmodified softer asphalt binders
- Allow aggregate gradation above restricted zone
- Include PC ductility

Proportions

- Allow use of Higher RAP contents <a> 35% (<a> 30% RBR)
- Add 75% RAM binder availability for high RAM (>20% RBR)

Mix Design & Performance

- Include IDEAL-RT test
- Require 50 gyrations only
- Relax IDT requirement
- Revise Moisture Sensitivity evaluation HWTT presently used
- Remove minimum HWTT requirement

Concepts-Other Items

Acceptance

- Revise acceptance criteria future
- Require frequent ignition oven correlation within 2 months of project

Other

- Consider RAP QMP
- Develop BMD with High RAP GUIDE
- Consider CT requirements by climate future
- Relax volumetric requirements (toward BMD approach D) – future

Tiered Approach (NAPA QIP 131)

	ormance	n Risk	t Needs		Binder Evaluation			Mixture Evaluation	
Approach	Field Perfo Risk	Mix Desig	Time and Equipment	Cost	Virgin	RAP and/or RAS	Blend	Rutting	Cracking
Simplest	Mod	High	Low	Low	No	No	No	Yes	Yes
Intermediate	Mod	Mod	Mod	Mod	Yes	Yes	No	Yes	Yes
Comprehensive	Low	Low	High	High	Yes	Yes	Yes	Yes	Yes

Balanced Mix Design with High RAM

• Volumetrics

- Consider effects of absorbed binder
 - VMA = AV + V_{be} = f(G_{sb})
 - DP = p_{200} / P_{be}
- Decrease recycled binder availability
- Increase effective binder
 - Increase OBC, VMA
 - Add RA
 - Specify min OBC
 - Decrease design AV
 - Reduce N

Strategies for BMD

- Increase RA dose or Change type
- Select softer virgin binder or one with better ΔT_{c}
- Adjust aggregate blend
- Modify split between RAP_{BR} and RAS_{BR} or reduce RAS_{BR}
- Reduce overall RAM or RBR

Mix Design Example — simplest Approach

	Control		
	Mixture	RAM Mixture	
Mixture Properties	0.0 RBR	0.33 RBR	Evaluation Criteria
Proportioning & Materials Sele	ection		
NMAS	1/2"	1/2"	1/2"
Virgin Binder PG	PG 64-28 PM	PG 64-28 PM	PG 64-28 PM
OBC (%)	5.5	5.6	Not specified
RAP Content (%)	0	40	Not specified
RAS Content (%)	0	0	Not specified
RBR	0	0.33	Not specified
Recycling Agent Type	n/a	Bio-based	Not specified
Recycling Agent Dose (% by	0.0	4.0	Not specified
wt total binder)			
Mixture			
HWTT RD (mm) @ 50°C	3.9	3.5	≤ 12.5mm @ 20,000 cycles
IDEAL-CT CT _{Index} @ 25°C	85	90	≥ Control Mixture

Mix Design Example — Intermediate/Comprehensive Approaches

		DOT		Recycled		
	Virgin	Control	Recycled	w/Softer Binder	Rejuvenated	
Mixture Properties	0.0 RBR	0.22 RBR	0.31 RBR	0.31 RBR	0.31 RBR	Evaluation Criteria
Proportioning & Mat	terials Selectio	on				
NMAS	1/2"	1/2"	1/2"	1/2"	1/2"	Not specified
Virgin Binder PG	PG 58-28	PG 58-28	PG 58-28	PG 52-34	PG 58-28	PG 58-28 for climate
						& traffic
OBC (%)	5.6	5.6	5.4	5.4	5.4	Not specified
RAP Content (%)	0	27	36	36	36	Not specified
RAS Content (%)	0	0	0	0	0	Not specified
RBR	0	0.22	0.31	0.31	0.31	Not specified
Recycling Agent	n/a	n/a	n/a	n/a	Bio-based	Not specified
Туре						
Recycling Agent	0.0	0.0	0.0	0.0	5.5	Not specified
Dose						
(% by wt total						
binder)						

Mix Design Example — Intermediate/Comprehensive Approaches

		DOT		Recycled		
		DOT		w/Softer		
	Virgin	Control	Recycled	Binder	Rejuvenated	
Mixture Properties	0.0 RBR	0.22 RBR	0.31 RBR	0.31 RBR	0.31 RBR	Evaluation Criteria
Component Materials						
Virgin Binder PGH (°C)	59.4	59.4	59.4	52.3	59.4	Not specified
Virgin Binder ΔT_c (°C)	-3.4	-3.4	-3.4	+0.4	-3.4	<u>></u> -3.5°C
RAP Binder PG	n/a	PG 82-10	PG 82-10	PG 82-10	PG 82-10	Not specified
RAP Binder PGH (°C)	n/a	83.5	83.5	83.5	83.5	Not specified
RAP Binder ΔT_c (°C)	n/a	-7.3	-7.3	-7.3	-7.3	<u>></u> -7.5°C
Binder Blend						
Binder Blend Continuous PG	n/a	PG 65-25	PG 68-23	PG 62-26	PG 59-33	PG 58-28
Binder Blend ΔT_c (°C)	n/a	-4.3	-5.3	-2.9	-3.1	<u>></u> -5.0°C
Mixture						
HWTT N _{12.5} @ 50°C	NA	NA	NA	NA	6750	<u>></u> 5,000
I-FIT FI @ 25°C	12	14	10	17	16	<u>></u> 7
UTSST CRI _{Env}	NA	23	8	22	57	<u>></u> 17

Draft AASHTO Standard Practice for Engineering High RBR (0.3-0.5) Recycled Mixtures

Binder Blend Rheological Evaluation Tools

Mixture Performance Evaluation Tools

RAP Binder Availability Factor

TX BMD with High RAP GUIDE

MANAGING ASPHALD PAVENTS CONFERENCE AND TRADE SHOW MAY 15-17, 2023 * WACO, TEXAS

High RAM = Multiple Benefits

All RAM are NOT the Same Engineering Economic **Environmental**

Each Materials Combination is UNIQUE

Virgin Aggregates

Balanced Mixture Performance is KEY

Questions & Discussion

