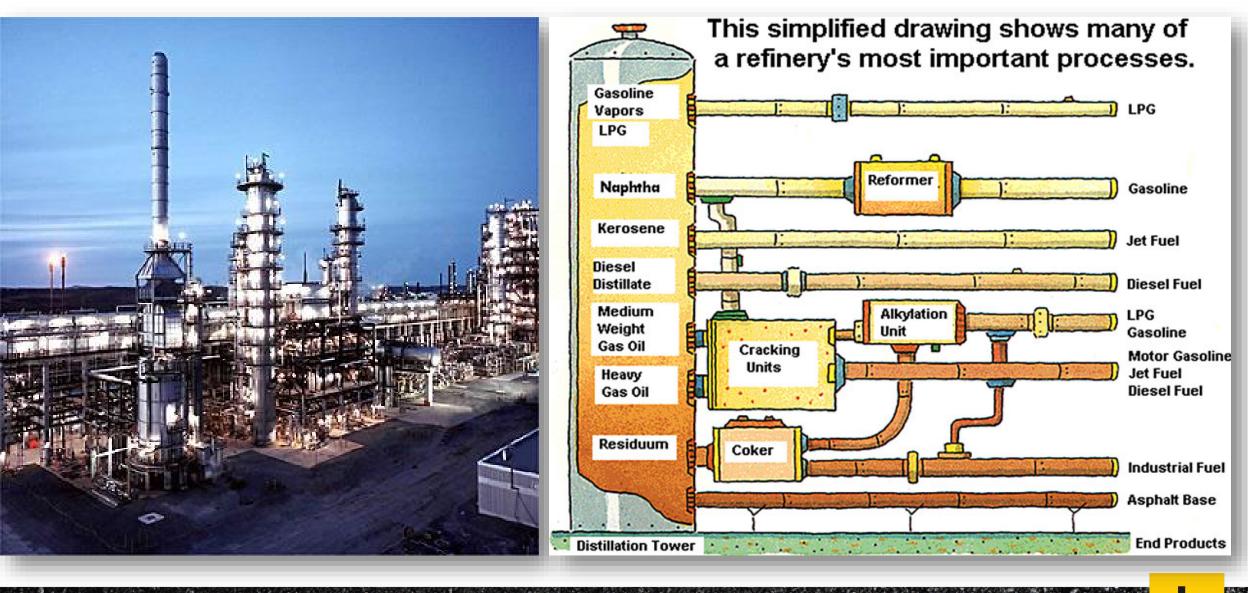


ELGOVEL


Please check your App for scheduled Sessions!

Key Components to Success

Crude Oil Refining

ТХАРА

History: Pre 1970s

- 1950s & 1960s Paving of the Federal Interstate System "Get the Farmer out of the Mud"
- HMA Mixture Types: Type A, B, C, D, F
- Asphalt Binder: AC10 & AC20 Non-Polymer Modified
- HMA Design Methodology: Agency Provided
 - Hveem Method using Texas Gyratory Compactor (TGC)
 - > Marshall Method using Marshall Hammer
- Agency Performed Pavement Design & Specified Construction Methodology
 - Pavement Design: Pavement Thickness
 - Construction Methodology "Method Specs" Inspector Dependent Outcomes

History: Pre 1970s

- Tests for Quality Performed by Owner/Agency
 - > Lab: Density, Gradation, AC%, Hveem Stability or Marshall Stability & Flow
- Tests for Quality
 - Field: Density (Compaction)
 - Field: Ride Quality using 10 foot straight edge
- Focus was on Production, Production, Production
- Other Factors
 - > Truck Traffic Relatively low
 - Truck Weights Relatively low
 - Biased Ply Tires Relatively low tire pressures "Balloon tires"

History: 1970s & 1980s

- Significant Factors
 - Truck Traffic Increased Significantly
 - Truck Weights Increased Significantly
 - Biased Ply Tires "Balloon tires" replaced by Steel Belted Radial Tires Higher Pressure Smaller "footprint" - More Stress Damage to the Roadway – Increased Rutting
- HMA Performance and Durability Generally Went Down
- Decrease in Overall Ride Quality
- Increased Awareness of Physical & Thermal Segregation and Decreased Ride Quality
- Shifting from Production Focus to Quality Paving Focus Emergence of QCQA Specs
- Emergence of Additives Latex & SBS Polymer, Lime, Anti-strip additives

History: 1990s

- Traffic Continued to Increase (Trucking) Congestion Increased "Slow Heavy Loads"
- HMA Mix Types
 - Stone Matrix Asphalt (SMA)
 - Superpave Mixes Designed with Superpave Gyratory Compactor (SGC)
 - > Permeable Friction Courses (PFC) & Other "Specialty Mixes"
- Additives to Address Rutting & Stripping: Lime, Liquid Anti-strip, Fibers, Etc
- Performance Graded (PG) Asphalt Replaced Viscosity Graded Binders
 - > Much more reliance on polymer modified asphalt
- Rutting Problems Greatly Decreased Cracking Issues Increased

- Ride Quality Measurement Shifted from 10-foot Straight Edge, California Profilograph to High-Speed Laser
 Profilers
- Public Demanded Better Ride Quality Agencies Began Requiring Minimum Ride Quality Standards

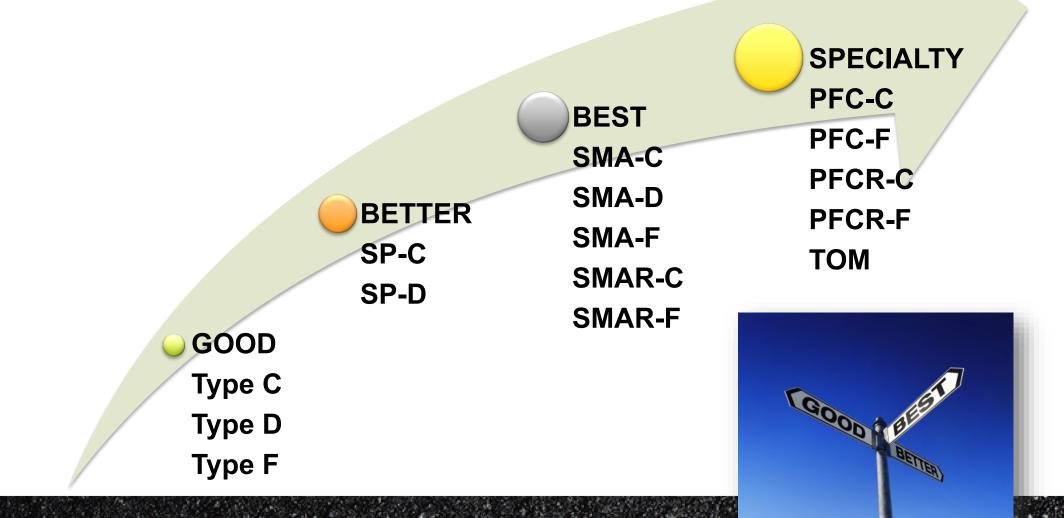
History: 2000s to Present

- Quality Control Quality Assurance Specifications (QCQA) Became The Standard
- Emergence of New Laboratory Tests
 - Hamburg Wheel Test to Identify Rutting & Stripping Susceptibility
 - > Overlay Test, Ideal CT test etc. to Identify Cracking Susceptibility
 - Focus on "Balanced Mix Designs" to address Rutting & Cracking
- Increased Use of Recycled Asphalt Pavement (RAP) in HMA
- Increased Use of Warm Mix Additives to Reduce Emissions and Improve HMA Workability
- Migration of all Mix Designs to Superpave Gyratory Compactor
- Emphasis on Tack Coat and Bonding Between Layers
- Emergence of Thermal Imaging Systems (TIS) to Identify Thermal and Physical Segregation in HMA Paving

Balance Mix Design Objectives

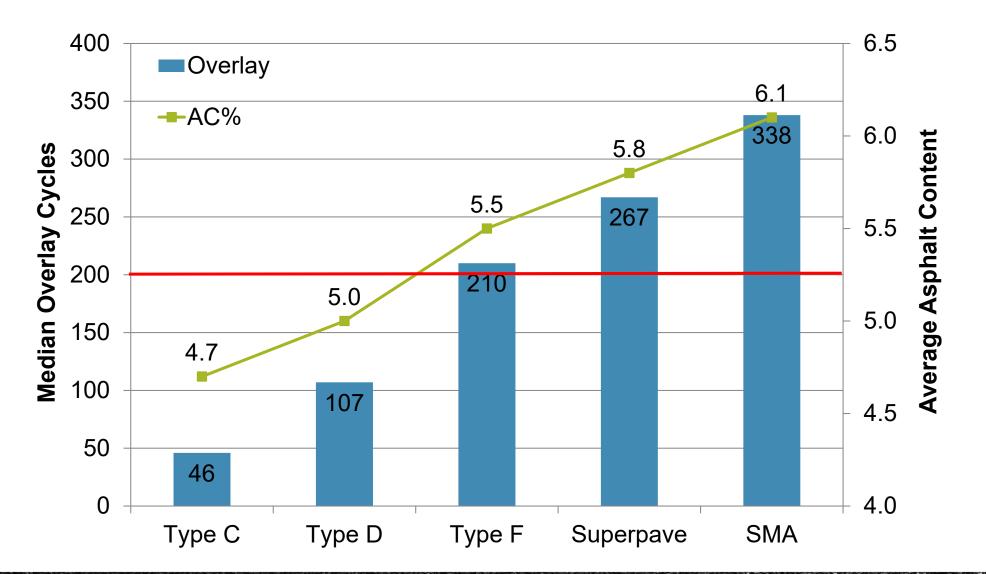
- Permanent Deformation
- Fatigue Cracking (Load)
- Low Temperature Cracking (Environment)

Most Common HMA Mix Types

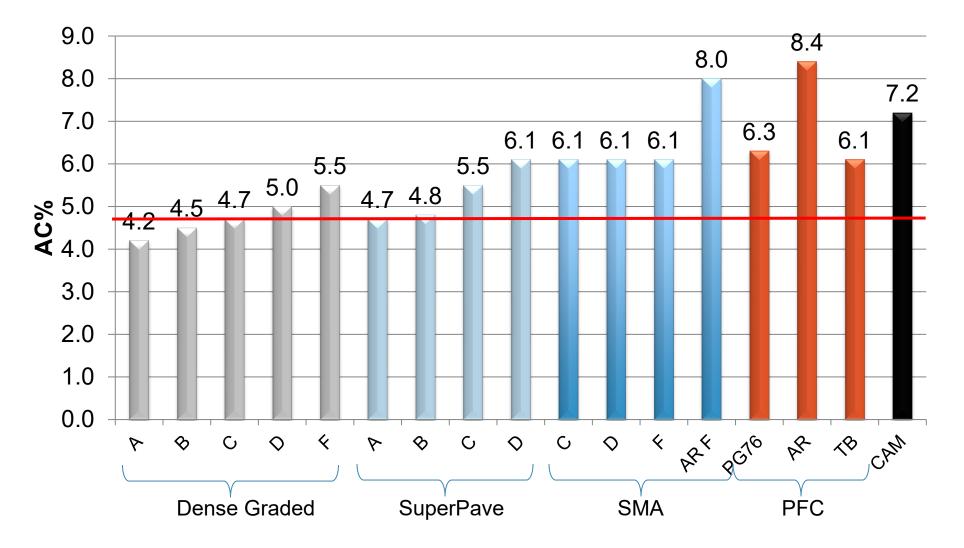

Dense Graded – Item 340, 341 (SS 3076) \succ Type/Size A, B, C, D, F Superpave – Item 344 (SS 3077) ➤Type/Size SP-A, SP-B, SP-C, SP-D Permeable Friction Course (PFC) – Item 342 (SS 3079) Type/Size PFC-F, PFC-C, PFCR-F, PFCR-C Stone Matrix Asphalt (SMA) – Item 346 (SS 3080) Type/Size SMA-C, SMA-D, SMA-F, SMAR-C, SMAR-F Thin Overlay Mixes (TOM) – Item 347 (SS 3081) >Type/Size TOM-C, TOM-F Thin Bonded Friction Course – Item 348 (SS 3082) Type/Size PFC-F, PFC-C, PFCR-C, TBWC (Type-A, Type-B, Type-C)

Mixture Selection Goals & Options

```
Goals:
       Performance
     Functionality
Cost
    tions:
      Type of Mix
Size of Mix
       Lift Thickness
       Binder Grade
       Additives
       Recycled Material
```



First Choice (Cracking Resistance): Selecting the right mix (Based on Overlay Results)

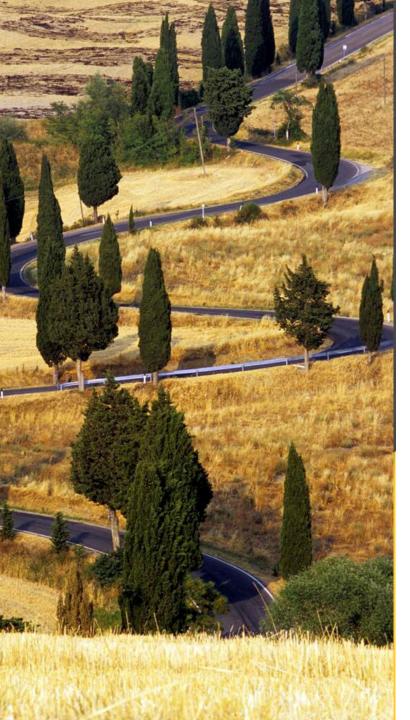


2、「ないは、いたい」「ないない」「ないない」

How much Better are the "better" mixes?

Binder Content – Statewide Averages

Dense Grade HMA (Small Quantity) "Non-QCQA" – Item 340


Typical Use

- Typically used for projects with small quantities (less than 5000 tons) of hot mix asphalt (HMA).
- It is recommended for miscellaneous applications such as routine maintenance work, backfilling utility cuts, driveways, etc.

Advantages

- Lower initial cost
- More experience & familiarity

- Cannot accommodate high AC contents
- No stone on stone contact
- Lower texture for surface mixtures (Type C, D, and F)
- can <u>either</u> rut resistant <u>or</u> crack resistant, but <u>not both</u>.

Dense Grade HMA "QCQA" Item 341 (SS 3076)

Typical Use

- Can be used for a variety of applications ranging from new construction to overlays.
- Applied to high volume and low volume roads.
- Used as base, intermediate or surface layers.

Advantages

- Lower initial cost
- More experience & familiarity

- Cannot accommodate high AC contents
- No stone on stone contact
- Low texture of dense graded surface mixtures (Type C, D, and F)
- can either rut resistant or crack resistant, but not both.

Superpave Mixtures Item 344 (SS 3077)

Typical Use

- Versatile mix used for a variety of applications ranging from high volume to low volume roadways; from new construction to overlays.
- Used as base, intermediate and surface layers.

Advantages

- Can be used on medium to high volume roadways.
- The binder content can be adjusted by adjusting the N-des level.
- Stone on stone contact is possible to achieve depending on the gradation
- The coarse surface texture can be beneficial for wet weather traction.

- More difficult to compact.
- May have intermediate temperature tenderness (tender-zone).
- Gradation is not as "gap graded" as an SMA mixture.
- More susceptible to cracking and water infiltration than SMA mixtures

ASPHALA ASPHALA PAVENENTS CONFERENCE AND TRADE SHOW MAY 15-17, 2023 * WACO, TEXAS

PERMEABLE FRICTION COURSE (PFC) Item 342 (SS 3079)

Typical Use

- Is normally used as a surface course on high-speed roadways (>45mph).
- PFCR is recommend as an overlay on existing concrete pavement, when a high degree of noise reduction is required and as an overlay on a pavement that has high severity cracking.

Advantages

- Reduced water spray,
- Improved wet weather visibility
- Improved visibility of pavement markings,
- Reduced tire noise, and
- Restored ride quality.

- A higher initial cost (PFCR > PFC)
- Additives require modifications to typical HMA production processes.
- They must be placed on a pavement that is structurally sound and relatively impermeable.
- They freeze faster and thaw slower than other mixtures.
- PFC mixtures are not as resistant to high shearing forces.

Stone Matrix Asphalt Item 346 (SS 3080)

Typical Use

- Used as a surface mix or intermediate layer in the pavement structure on high volume roadways.
- SMAR is recommend as an overlay on existing concrete pavement and as an overlay on a pavement that has high severity cracking.

Advantages

- Excellent rut resistance and crack resistance.
- Stone on stone contact.
- Usually more impermeable than performance design mixtures.
- High degree of surface texture beneficial for wet weather traction.

- Higher initial cost compared to other mixtures.
- Additives such as fiber & mineral fillers can require modifications to typical HMA production processes.
- SMA mixtures can be particularly difficult to place and compact in cool weather.

Thin Over Mixtures (TOM) Item 347 (SS 3081)

Typical Use

- Used as a very thin surface mix (normally between 0.5 &1.25 inches
- Used for overlay and mill & fill operations

Advantages

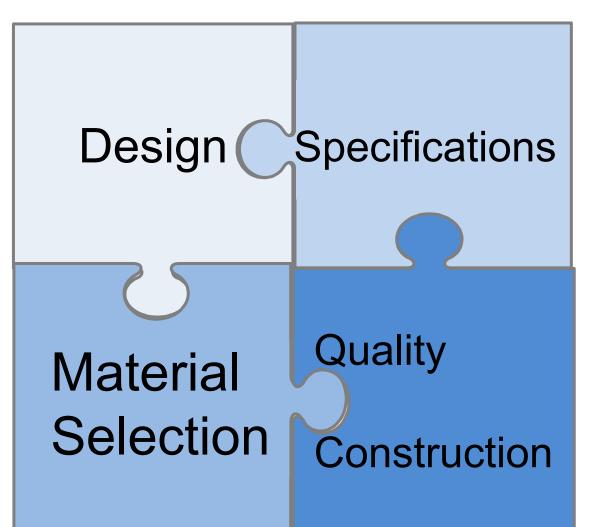
- Good resistance to cracking & rutting
- Reduced tire noise, and
- Restored ride quality.

- A higher initial cost per ton (although each ton goes a long way)
- Thin lift cools quickly so not suitable for construction in cold weather
- Typically requires Class A aggregate for skid resistance

ASPHALGANG ASPHALGANG PAVENENTS CONFERENCE AND TRADE SHOW MAY 15-17, 2023 * WACO, TEXAS

Thin Bonded Friction Courses Item 348 (SS 3082)

Typical Use

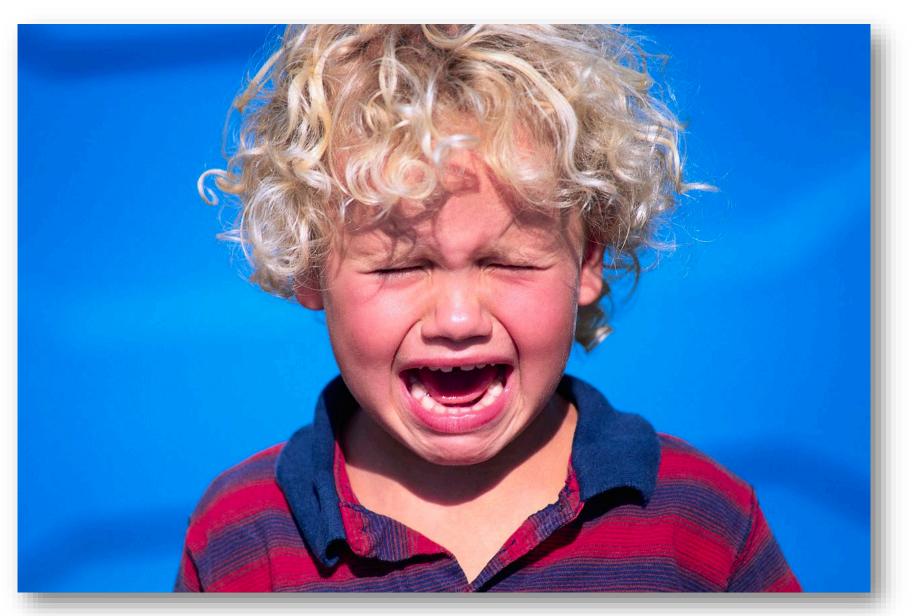

- Uses as an overlay strategy over existing concrete pavement or flexible pavement
- Encompasses traditional "Nova Chip" mixes and some PFC mixes
- Incorporates a spay applied membrane that promotes bonding and improves cracking

Advantages

- Essentially applies and underseal and paving layer in one pass
- Improves skid resistance
- Reduced water spray,
- Improved wet weather visibility
- Improved visibility of pavement markings,
- Placed in very thin lifts

- Can require specialized pavement equipment
- They must be placed on a pavement that is structurally sound and relatively impermeable.
- Viewed by some as a proprietary process with higher cost implications

Key Components to Success



What Gets Measured, Gets Done!!

Don't Expect It If You Don't Inspect It!!

We Can't Solve Today's Problems with Yesterday's Thinking

Next – Robert Lee

