Simple Tests for Detecting Poor Cracking Resistant Binders

Research Team

TTI: Fujie Zhou and Hui Chen; CTR: Amit Bhasin and Darren Hazlett

TxAPA-MASTERS, Buda, Tx, July 24, 2024

1

Acknowledgement and disclaimer

- This research is funded by the Texas Department of Transportation. The views, thoughts, and opinions presented here belong solely to the presenter, and not necessarily to any organization.
- This research is a jointed effort between TTI and UT-Austin. Both research teams play a significant role to the overall research project.

Presentation outline

- Introduction and objective
- Overall research methodology
- Laboratory experimental design
 - Selection of typical asphalt binders
 - Asphalt binder tests and parameters
 - Asphalt mixture tests and parameters
- Laboratory test results and analysis
- Summary and recommendation

Introduction

□ Mix durability or cracking is the predominant problem in Texas.

- □ Binder grade, content, and quality are three critical factors.
 - Binder grade selection guide addressing the binder grade selection
 - Balanced mix design mainly dealing with the binder content
 - Urgent need of rapid tests detecting binder quality

Introduction

Binder quality issue:

Phil Blankenship et al. AAPT 1998: "Are all PG70-22S the same?

TxDOT had design/production issue with varying binder source change.

□ Objective:

Identify suitable tests and parameters for detecting poor cracking resistant binders

Overall research methodology

- Review literature to identify potential binder tests
- Laboratory study to select 2-3 binder tests and parameters
 - Select representative binders
 - Perform binder tests
 - Perform mixture tests
 - Compare binder data with mixture data
 - Identify the best binder tests and parameters

Construct field test sections to validate binder tests and parameters

□ Binder selection:

PG64-22:8 sources; PG76-22: 6 sources

- □ Binder tests:
 - binder chemistry: XRF
 - Binder failure:
 - Poker chip test
 - Poker chip creep test
 - Traditional binder rheology tests: DSR and BBR
 - R-value
 - $\blacksquare \Delta Tc$
 - Phase angle (e.g. $\delta_{8967 \text{ kPa}}$)
 - NCHRP 9-59 Glover-Rowe parameter: $\frac{G^*(\cos\delta)^2}{\sin\delta}$

Asphalt mixtures

One virgin mix with 5.5%AC, only variable: asphalt binder source

Mixture tests and parameters:

- Mix aging levels:
 - short-(2hr@comp. temp) ≈ Binder RTFO; long-term (20hr@110C)≈binder PAV20
- Two cracking tests: IDEAL-CT and OT

Binder rheology parameter: Phase angle at 8967 kPa

Aging condition

$$\delta_{8967 \text{ kPa}} = \delta_1 + \frac{\log(8967) - \log(|G^*|_1)}{(|G^*|_2) - (|G^*|_1)} (\delta_2 - \delta_1)$$

Binder rheology parameter: G* and phase angle@25C

 δ at 25°C, 10rad/s (°)

 $G - R = \frac{G^*(\cos\delta)^2}{\sin\delta}$

 \Box Binder rheology parameter: ΔTc from BBR

 $\Delta T_c = T_{c,s} - T_{c,m}$

Binder rheology parameter: R-value from BBR

$$R = \log (2) \frac{\log (S/3000)}{\log (1 - m)}$$

Poker chip test results

Poker chip creep test results

□ Mixture test results: OT

Correlation between XRF-sulfur content and mixture parameters

 \square Correlation between δ at 8967 kPa and mixture parameters

Correlation between phase angle at 25C and mixture parameters

Correlation between G-R and mixture parameters

 \Box Correlation between ΔT_c and mixture parameters

Correlation between R-value and mixture parameters

Correlation between poker chip ductility and mixture parameters

Correlation between poker chip stiffness and mixture parameters

Summary and recommendation

Summary

- Phase angle at 25C has the best correlation with mixture parameters
- Phase angle at G*=8967 kPa has the 2nd best correlation with mixture parameters
- Poker chip stiffness has the 3rd best correlation with mixture parameters

Recommendation

Construct field test sections to validate these binder parameters.

Thank You All!