Surface Aggregate Classification of Reclaimed Asphalt Pavement (RAP)

Texas A&M Transportation Institute

Sheng Hu and Fujie Zhou July 24, 2024

Presentation outline

- Introduction
- Skid resistance and SAC system
- Dynamic friction test (DFT) for measuring aggregate friction
- RAP DFT measurement and its impact on mix slab friction
- Preliminary DFT-based SAC for RAP
- Pilot implementation project: latest status

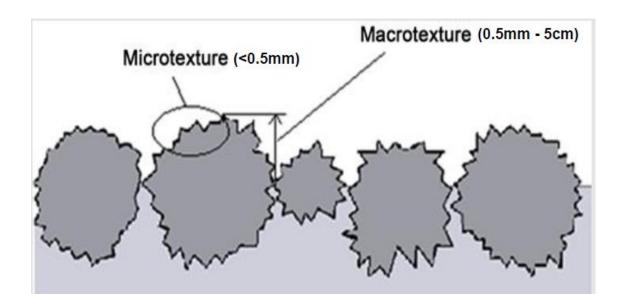
Introduction

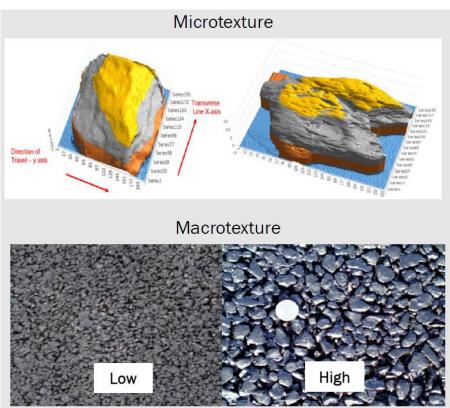
Skid resistance of asphalt pavement is critical for safety.

□ TxDOT has a goal of cutting fatal crashes in half by 2035 and zero fatalities by 2050.

Introduction

- Demand for SAC-A aggregates significantly increases year after year.
- Both TxDOT and asphalt industry advocate for sustainability.
 - RAP = asphalt binder + aggregates





□ The research objective was to investigate if RAP with SAC-A aggregates can be used as SAC-A rather than SAC-B.

Skid resistance and SAC system

- Skid resistance is a function of Microtexture and Macrotexture.
 - Aggregate type: Microtexture
 - Mix type: Macrotexture

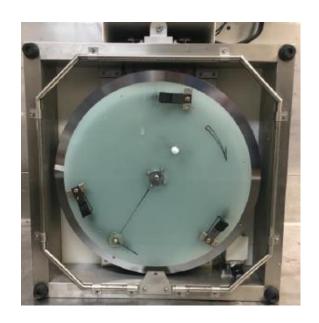
Skid resistance and SAC system

Indirect measurement of aggregate texture

Property	Test Method	SAC A	SAC B	SAC C
Acid Insoluble Residue, % Minimum	Tex-612-J	55	-	

Acid Insoluble Residue

Skid resistance and SAC system


One SP-D mix with 100% SAC-A aggregates

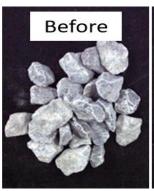
Class (A	Rock (Y/N):	Yes	Yes	Yes	No		
Sieve	Size:	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %
Passing	Retained	individual Ret., 76	individual Ret., 76	individual Ret., %	individual Ret., %	individual Ret., 76	ilidividual Ret., 76
-	3/4"	0.0	0.0	0.0	0.0		
3/4"	1/2"	0.0	0.0	0.0	0.0		
1/2"	3/8"	4.8	0.0	0.0	0.0		
3/8"	No. 4	28.1	6.5	1.4	0.0		
No. 4	No. 8	12.4	2.7	7.3	0.0		
No. 8	No. 30	3.3	0.5	12.7	0.0		
No. 30	No. 50	0.3	0.0	2.8	0.0		
No. 50	No. 200	0.4	0.1	2.8	8.3		
No. 200	Pan	0.9	0.2	3.1	1.7		
	Total:	50.0	10.0	30.0	10.0		
Percent	of plus No. 4	32.9	6.5	1.4	0.0		
Percent	of plus No. 8	45.2	9.2	8.6	0.0		
	Percent of plu	s No. 4 from class	(A) Rock 40.7		Percent of pl	us No. 8 from class	(A) Rock: 63.1
		Total Percent of p	olus No. 4 40.7				plus No. 8 63.1
	ercent of plus No. 4 from class (A) Rock 100.0 Percent of plus No. 8 from class (A) Ro			(A) Rock: 100.0			

Fiscal Year	Skid Number	Skid Test Date
2016	32.0	7/18/2016
2016	30.0	7/18/2016
2016	28.0	7/18/2016
2016	27.0	7/18/2016
2016	30.0	7/18/2016
2016	35.0	7/18/2016
2016	33.0	7/18/2016
2016	36.0	7/18/2016
2016	38.0	7/18/2016
2018	20.6	6/20/2018
2018	19.4	6/20/2018
2018	19.6	6/20/2018
2018	19.6	6/20/2018
2018	24.4	6/20/2018
2018	21.6	6/20/2018
2018	34.7	6/21/2018
2018	38.0	6/21/2018
2018	36.1	6/21/2018

DFT for measuring aggregate friction

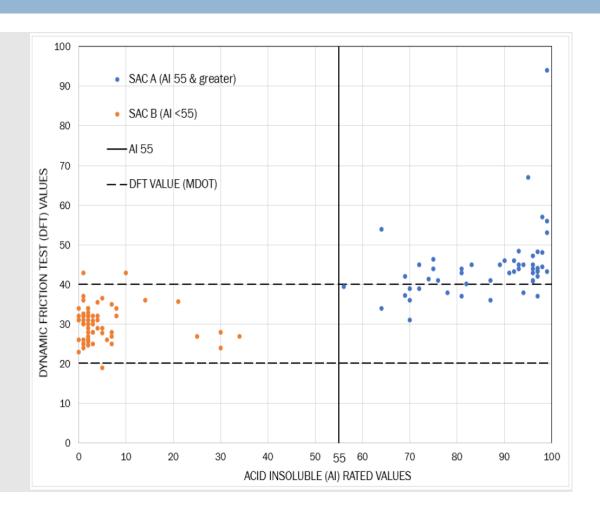
- Dynamic friction test (DFT): direct measurement
 - Measures a friction value on wet pavement surface (ASTM E1911)
 - Spinning disk with 3 rubber sliders contacting surface as disk rotates.

DFT for measuring aggregate friction

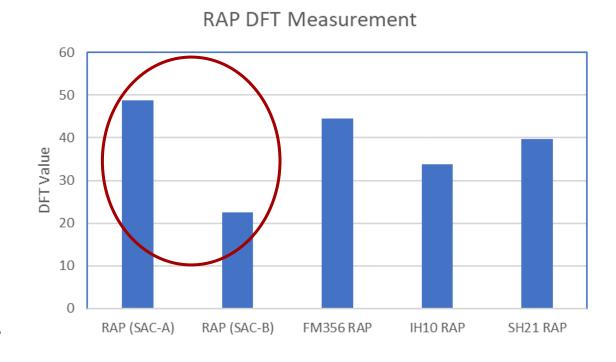


TxDOT DFT test

- \blacksquare Micro-Deval polishing aggregates: 10,500 revolutions for 1-3/4 hours
- \blacksquare Prepare an aggregate ring: passing 3/8" sieve and retaining on $\frac{1}{4}$ " sieve
- Run DFT to measures aggregate frictional property: DFT value

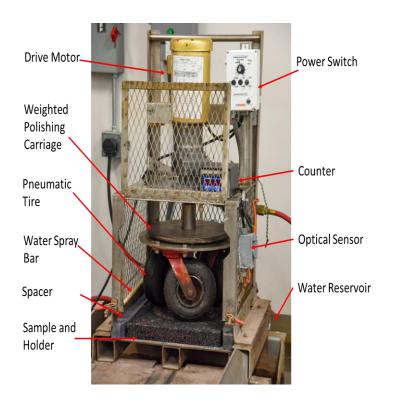

DFT for measuring aggregate friction

□ Richard Izzo

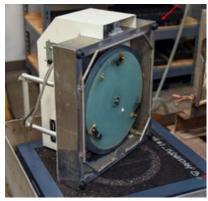

2020 TxDOT short course

- DFT value compared with acid insoluble for SAC A and SAC B sources.
- All material codes combined –
 Dolomite, Gravel, Igneous, Lightweight,
 Limestone, and Sandstone.
- Generally, a high Al > 55 will produce a higher DFT Value.
- DFT does a good job differentiating aggregate sources with lower Al values.

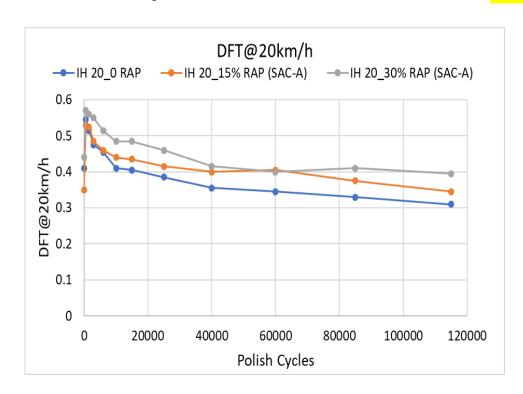
RAP DFT

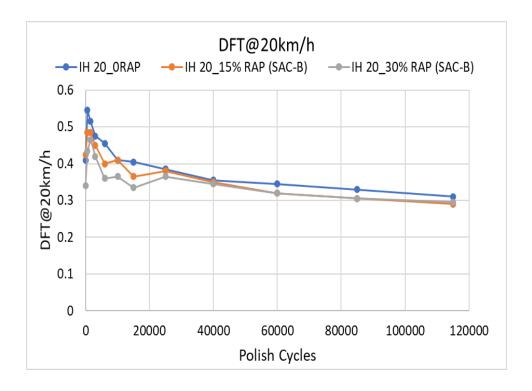

- Ignition oven test
- Micro-Deval polishing aggregates: 10,500 revolutions for 105 min.
- □ Prepare an aggregate ring: passing 3/8" sieve and retaining on 1/4" sieve
- Run DFT to measures aggregate frictional property

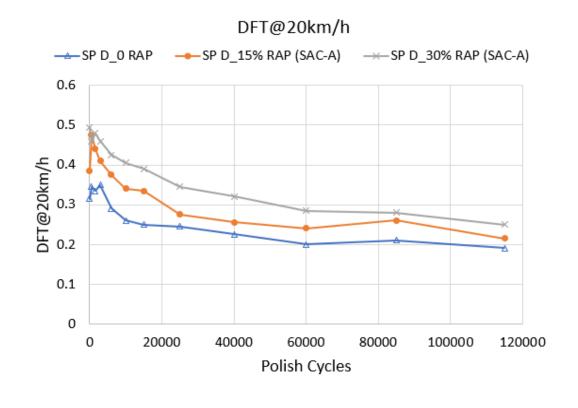


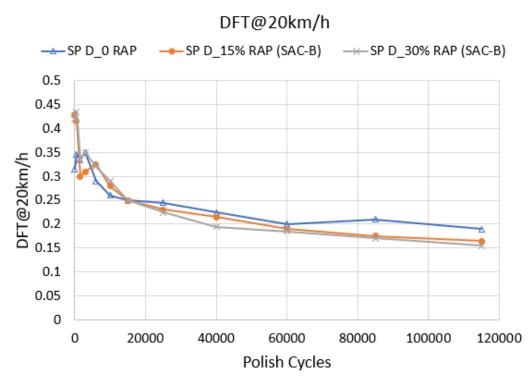


□ RAP impact on mix slab DFT









□ RAP impact on mix slab DFT: one curve=one week

Preliminary DFT-based SAC for RAP

20 mixes (40 slabs=8 months' testing)

SN is a function of mixture microtexture
 (DFT) and macrotexture
 (measured by circular track meter-CTM in mean profile depth-MPD)

Mixture Name	Slab DFT * 100 (@ 3000 Cycles)	Blended DFT * 100 (AMD, +#4)		IFI	SN (50)
FM 356_0 RAP	49	41.8	0.748	0.261	26.3
FM 356_15% RAP (SAC-A)	52	42.8	0.661	0.278	28.4
FM 356_30% RAP (SAC-A)	50.5	42.8	0.641	0.270	27.3
FM 356_15% RAP (SAC-B)	46.5	40.7	0.865	0.247	24.7
FM 356_30% RAP (SAC-B)	45	38.5	0.537	0.239	23.7
IH 20_0 RAP	47.5	32	0.682	0.253	25.3
IH 20_15% RAP (SAC-A)	48.5	33.5	0.730	0.259	26.0
IH 20_30% RAP (SAC-A)	55	35.1	0.694	0.296	30.5
IH 20_15% RAP (SAC-B)	45	31.2	0.473	0.239	23.7
IH 20_30% RAP (SAC-B)	42	30.4	0.408	0.223	21.8
IH 10_0 RAP	26	29.3	0.513	0.147	13.2
IH 10_15% RAP (SAC-A)	31	31.1	0.500	0.169	15.6
IH 10_30% RAP (SAC-A)	38	32.2	0.460	0.202	19.4
IH 10_15% RAP (SAC-B)	25.5	29.3	0.772	0.144	12.9
IH 10_30% RAP (SAC-B)	22.5	28.7	0.473	0.132	11.7
SP D_0 RAP	35	33.4	0.775	0.188	17.7
SP D_15% RAP (SAC-A)	41	34.2	0.653	0.218	21.2
SP D_30% RAP (SAC-A)	46	35.7	0.657	0.245	24.3
SP D_15% RAP (SAC-B)	31	31.8	0.462	0.169	15.6
SP D_30% RAP (SAC-B)	35	31	0.460	0.188	17.7

Preliminary DFT-based SAC for RAP

Property	Test Method	SAC-A for RAP
Micro-Deval loss, % max (TxDOT 0-6959)	Tex-461-A	15
DFT *100 (After Micro-Deval), min	ASTM E1911 TxDOT aggregate ring	43

- Select 3 field projects with milled RAP
- Evaluate RAPs using both SAC aggregate tests and DFT
- Design the mixes using the SAC-A RAPs
- Construct field test sections with the SAC-A RAPs
- Monitor and measure field skid number and DFT friction
- Verify and adjust the preliminary SAC-A RAP criteria
- Training workshops

Identified two field RAP sources

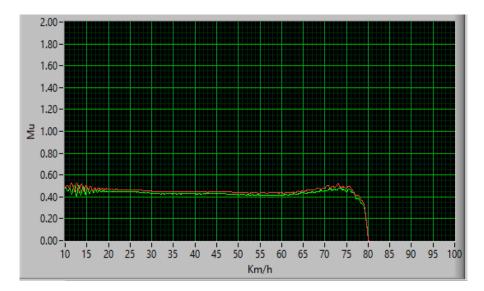
Fort Worth (FW) RAP, Texas Materials Milled from IH35 Fractionated Sampled on Feb. 8th, 2024

Waco RAP, Big Creek Materials Milled from PFC surface Non-fractionated Sampled on June 26th, 2024

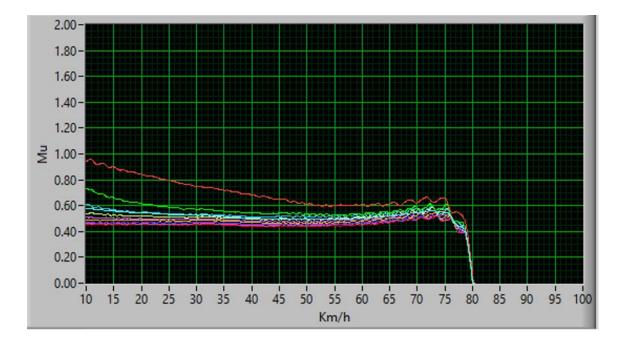
- □ RAP evaluation
 - Verify if RAP is SAC-A through aggregate test-Acid Insoluble test
 - Conduct DFT test on RAP aggregates after ignition oven and micro-deval
 - Check the possibility of directly testing RAP without ignition or extraction
 - DFT test on raw RAP (without washing) before micro-deval
 - DFT test on washed RAP before micro-deval
 - DFT test on RAP after micro-deval

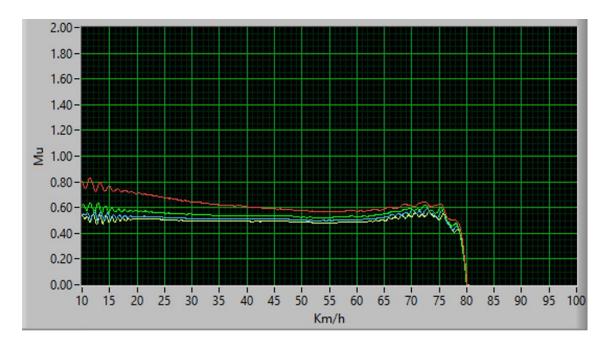
- SAC-A RAP evaluation challenges
 - RAP is a blended material and its coarse (retained on No. 4 sieve) and fine (passing No. 4 sieve) portions may differ significantly.
 - Aggregate ring DFT requires size passing 3/8" and retained on 1/4" (coarse portion only).
 - Acid insoluble test requires size passing No. 4 sieve and retained on No. 8 sieve (fine portion only).

Verify if RAP is SAC-A through aggregate test-Acid Insoluble test

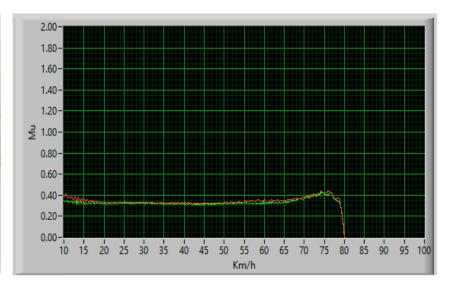

Aggregate Size	Sample No.	Ignition Oven	Auto Extraction
	1	35	41
Passing No. 4, retaining on No. 8	2	38	36
Passing No. 4, retaining on No. 8	3	36	38
	Average	36	38
Passing 3/8", retaining on No. 4	1	53	37

- RAP evaluation
 - Conduct DFT test on RAP aggregates after ignition oven and micro-deval




- RAP evaluation
 - DFT test on raw RAP (without washing) before micro-deval

- RAP evaluation
 - DFT test on washed RAP before micro-deval



- □ RAP evaluation
 - DFT test on RAP after micro-deval

□ DFT test results comparison

DFT @ 20 km/h

	Sample 1	Sample 2	Sample 3	Average
Before ignition, before micro-deval	0.47	0.52	0.56	0.52
Before ignition, after micro-deval	0.33	0.33	0.3	0.32
After ignition, after micro-deval	0.43	0.46	0.47	0.45

DFT @ 60 km/h

	Sample 1	Sample 2	Sample 3	Average
Before ignition, before micro-deval	0.45	0.5	0.53	0.49
Before ignition, after micro-deval	0.34	0.31	0.3	0.32
After ignition, after micro-deval	0.42	0.43	0.44	0.43

- RAP evaluation
 - Sent 3 buckets of Waco PFC RAP to MTD for further testing

- Field test sections with SAC-A RAP
 - Fort Worth District: new letting in Jan. 2025.
 - **-**

Q/A

Thank You All!