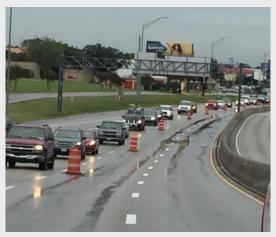


Wet Surface Crash Reduction Dynamic Friction Test (DFT)

Materials and Tests Division

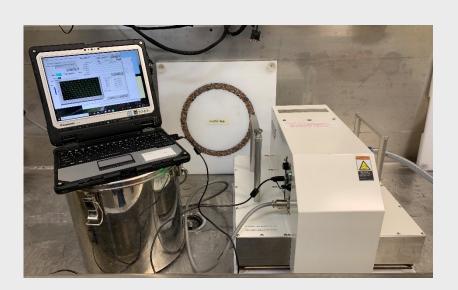
Soils & Aggregates Section


Richard Izzo, P.E.

Surface Aggregate Classification (SAC)

- Wet Surface Crash Reduction Program
 - ✓ Pavement Friction
 - ✓ Skid Resistance
 - ✓ Resistance to aggregate polishing

- Does not relate with aggregate physical properties.
 - ✓ Degradation
 - ✓ Durability
 - √ Hardness
 - √ Soundness


- > DFT measures friction values on wet pavement surface (ASTM E1911).
 - ✓ Roadway field test.
 - ✓ Nationally recognized and accepted, not a new test.
- Spinning disk with 3 rubber sliders dropped onto wet pavement as disk rotates.

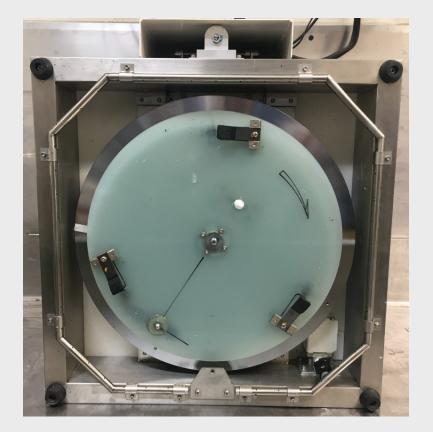
- Friction measured from 50 to 5 mph.
 - ✓ Reported DFT values at 37, 25, and 12 mph (60, 40, and 20 kph).

TxDOT laboratory test using DFT.

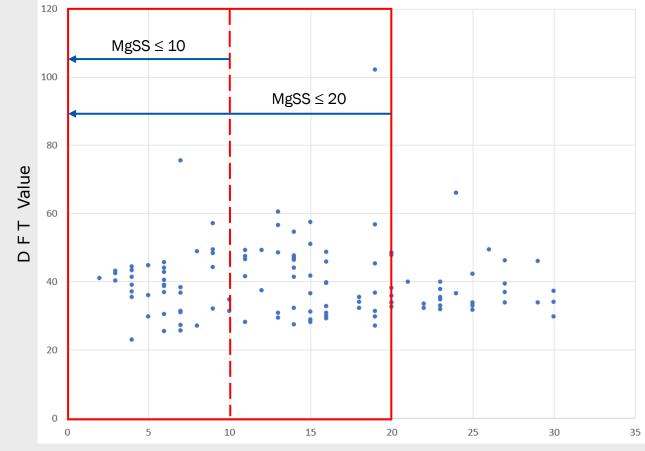
- ✓ Only Maryland DOT has a laboratory test procedure and published specification.
- ✓ TxDOT test method is easier and faster to run.

Aggregate polished using Micro-Deval, TxDOT test procedure.

- Bondo is placed into the ring as filler to hold the aggregate in place.
- Aggregate is shaken and spread from the trowel into the ring. *Minimal hand placement*.
- Tweezers are used to remove excess aggregate and to align particles.
- Roller is used to create a level, not flat surface.



Wear and condition of sliders are checked & verified before each test using ceramic tiles.

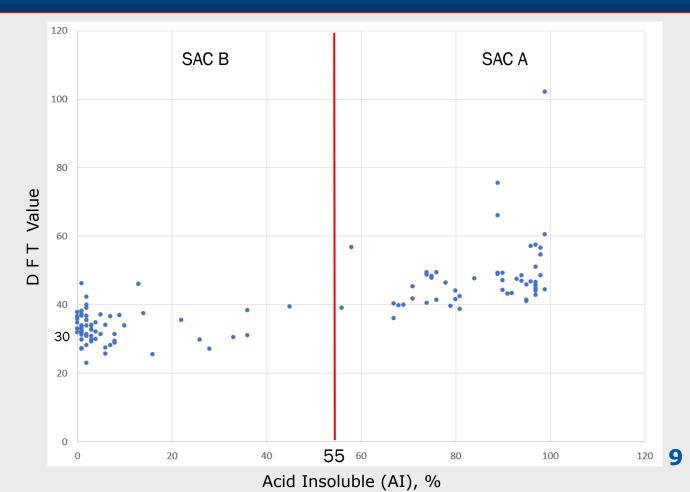


8

DFT values for all aggregate sources tested.

Soundness has no correlation to a physical friction test.

Risk too high for a Statewide SAC B+ based on MgSS.



Acid Insoluble only used for SAC A or B classifications.

Trends well with DFT.

Generally, as Al
increases so does DFT.

R-squared value is 0.51.


May be used to create

3 tiers of DFT

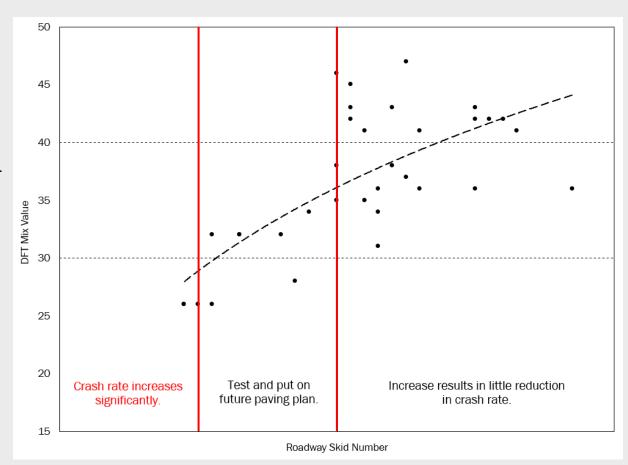
classification to

replace SAC.

May be used to create a SAC B+

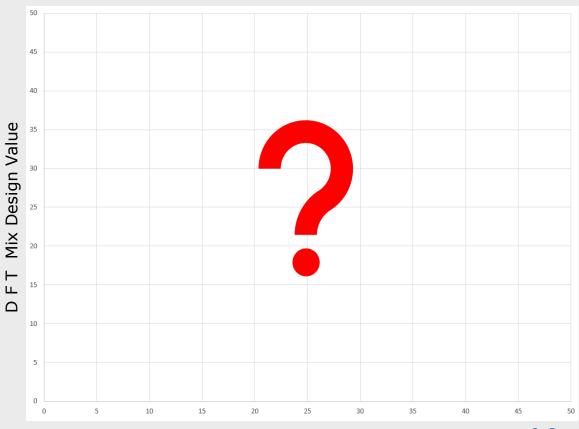
- Maryland DOT requires minimum DFT of 40 for high volume roadways using SMA and Superpave.
- MDOT has lower DFT requirements for lower volume roadways, 30, 25, and 20.

DYNAMIC FRICTION VALUE (DFV)					
	Category	DFV, minimum			
HDFV I		50			
HDFVII	High DFV	45			
HDFV III		40			
SDFVIV	Otto in allowed D.EV	30			
SDFVV	Standard DFV	25			
LDFV VI	Low DFV	20			


Connecting you with Texas.

- Use DFT values for aggregate sources to calculate a HMA mix design DFT combined value.
- Specification would be based on a blended DFT, mix design can use whichever aggregate sources available to meet a minimum DFT combined value.
- This will reduce demand on SAC A aggregate sources.

	Stockpile 1	Stockpile 2	Stockpile 3	Stockpile 4	
Region	Austin	Austin	San Antonio	San Antonio	
Producer	Capitol Aggregates	Capitol Aggregates	Dean Word	Dean Word	
Quarry	Delta Materials	Delta Materials	Lone Star	Lone Star	
Material	Sandstone	Sandstone	Limestone	Limestone	
SAC	А	А	В	В	
Soundness	20	20	17	17	
DFT Value	52.8	52.8	30.1	30.1	
Mix Type	SP-C	SP-C	SP-C	SP-C	
Bin %	13	16	11	13	
Sieve Size	Sieve Analysis				
1"	100	100	100	100	
3/4"	100	100	100	100	
1/2"	37	98	99	100	
3/8"	5	70.2	70	100	
#4	3	5.5	1	48	
+#4	97	94.5	99	52	
% Used	12.6	15.1	10.9	6.8	
Normalized	27.8	33.3	24.0	14.9	
Stockpile DFT	14.7	17.6	7	4	
Blend DFT	44.0				


Blend DFT value is calculated from % retained using the DFT value measured at MTD lab for each aggregate source.

- Small pool of skid data.
- Compares calculated mix design DFT value to skid, DFT not from roadway.
- DFT mix design value trends well with roadway skid values.

Need to know:

- ✓ Does a high DFT mix design value give us a high or better initial roadway skid number?
- ✓ How long will a high DFT mix design value sustain roadway skid through time?

