

From Mix to Mat: Achieving Quality in Paving & Compaction

Jim Warren

Asphalt Pavement Exchange

jwarren@APEXTX.org

From Mix To Mat:

Achieving Quality In Paving & Compaction

Achieving Quality

- What is your Definition of Quality relative to Paving & Compaction?
- Click on this QR Code to engage and post your opinions and views.

Let's get involved.

PollEv.com/jimw285

Text jimw285 to 22333

Who do you work for?

(A) TXDOT	
	0%
(B) Consulting Engineer / CEI	
	0%
(C) Asphalt Producer or Contractor	
(c) replicate in contractor	0%
(D) Supplier/Exhibitor	
(e, espens) =e.	0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

How many years experience in asphalt do you have?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Paving and Compaction Quality Attributes

Let's compare your attribute list to mine.

- √ Thickness
- √ Ride/Smoothness
- √ Cross Slope
- ✓ Texture
- ✓ Density (In place Air Voids)

Let's talk about Paving.

Paving Checklists

Safety	Project Planning	Balancing Operations
Patching	Milling	Sweeping
Tack/Bond/Seal	Trucking	Material Transfer Vehicle MTV
Paver Setup	Paver Operation	Transverse Joints
Longitudinal Joints	Compaction Setup	Roller Operation
Field Testing	Smoothness & Ride	Resources

- Paver It's the mobile factory that greates the finished mat.
 - How does it work?
- Screed Establishes Width, Texture, and initial Density.
 - How does it work?
- Grade control Establishes Ride, Spreadrate, OR Thickness
 - How does it work?

Paver

- Mat Alignment (longitudinal joint)
- Mix Delivery
- Head of Material
- Speed of Paver

Paver Unit - overview

Paving Direction

Always Keep a Uniform Head of Material TXAPA

Screed

- Shapes and extrudes mix into a uniform layer or mat.
- Develops initial mix density.
- Develops a surface texture unique to mix type.

Setting screed on joint

- before takeoff.

- Use starting blocks on both sides of screed.
- Blocks should be thickness of expected roll down. ~1/4" per inch of compacted thickness.
- Setup of screed and paver per "Paving by the Numbers"
- Don't "bury the augers" when filling the auger chamber.
- Pull off joint and check settings.

Direction of Paving

Checking Transverse Joint

- after pulling off.

- Place 10ft straightedge with ~2 ft overlapping on joint.
- Area underneath straightedge should be uniform thickness.
- Check in several locations across the width of mat.
- Indicates screed setup properly and parallel new mat.

Grade Control

- Establishes Ride, Slope, Yield OR Thickness
- Grade Control Reference/Ski single side towpoint input
- Joint Matcher single side towpoint input
- Cross Slope single side towpoint input
- Paver only has two towpoints you can't do everything in a single pass.

Grade and Slope Controls adjust Tow Point

Dual Non-Contact Grade Controls

Grade Sensor and Position

Sonic sensor position close to tow point improves ride.

Grade sensor at leading edge of screed matches joints.

Uses sound waves to measure distance.

Tow point response to sensor position

Paver Interactions

 How do paver settings, screed settings, and grade control settings interact?

How many things are being done right?

Now, let's talk about Compaction

Jim's Rules:

- 1. Get Density/In Place Air Voids.
- 2. Preserve Ride/Smoothness/IRI.
- 3. Do No Harm.

Compaction

- Rollers
- Variables

Forces of Compaction - Roller Types STXAPA

Static Steel-Wheeled

DYNAPAC

Many Options for Compacting

TXAPA
TEXAS ASPANIT PRINCE ASSOCIATION

- Pressure
- Vibration
- 1 or 2 rollers

- Pressure/Static
- Manipulation
- No roller

 Pressure/Static only

Breakdown Zone

~ 300° - 240°F

Intermediate Zone

~240° - 180°F

Finish Rolling Zone

~180 - 150°F

IMPORTANT: Temperature Zones vary significantly by mix type, binder type, and thickness. Temperature zone significantly impacted by environment and may change throughout shift.

In-Place Density/Air Voids

Control / Test Strip

Several factors come into play regarding how fast the mix cools onsite, affecting time available for compaction:

- ✓ Ambient air temperature
- ✓ Temperature of the existing surface
- ✓ Wind speed
- ✓ Lift thickness
- ✓ As-delivered mix temperature
- ✓ What do you do when they change?

Use Cooling Rates to determine TAC.

Google "Pavecool" or "Multicool"

Compaction

- Use enough roller(s)
- Monitor your temps use an infrared thermometer – a lot!
- Understand how much time you have to compact.
- Keep tight to the paver.
- Pinch the joint.
- Roller patterns change with weather and temp.

Checking Transverse Joint

Direction of Paving

- Before Compaction

10Ft Straightedge **Uncompacted Mat**

- Place 10ft straightedge with ~2 ft overlapping on joint.
- Area underneath straightedge should be uniform thickness.
- Check in several locations across the width of mat.
- Indicates screed setup properly and parallel new mat.

Checking Transverse Joint

- After Compaction

10Ft Straightedge

- Slide the 10ft straightedge from cold mat to compacted mat.
- Check in several locations across the width of mat.
- Little to no gap underneath straightedge indicates smooth joint.

Compaction Interactions

- Design and Operation impact ultimate performance
- Variable thickness versus density
- Variable thickness versus initial and ultimate ride

What's More Important?

· Let's do some Attribute comparisons and see which you think is

more important?

Attributes:

In Place AV

Temperature

Ride/Smoothess/IRI

Thickness

Cross Slope

Spread rate

Texture

What's More Important? In place Air Voids or Temperature? 0% 0% In Place Air Voids Mix Temperature Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What's More Important? Thickness or Cross Slope? 0% 0% Thickness Cross Slope Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What's More Important? Texture or Ride? 0% 0% Texture Ride Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What's More Important? In Place Air Voids or Ride? 0% 0% In Place Air Voids Ride/Smoothness

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What's More Important?

- Let's do a Constraint comparison and see which you think is more important?
- Sort your constraints top to bottom. Choose Wisely...
- Constraints?
 - Improving Performance
 - Quick Fix
 - Putting Tools in the Toolbox
 - On Time
 - On Budget
 - PMIS Score Card Goals

What Constraint is more Important?

A - Improving Performance

B - Staying on Budget

C - Staying on Time

D - Achieving PMIS Targets

E - Putting Tools in the Project Toolbox

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Good Practices

How can I tell if good practices are being followed?

- ☐ Paving off a stringline or longitudinal reference.
- ☐ Continuous paving operations and uniform paver speed minimal paver stops.
- ☐ Mainline paving, thickness and slope adjustments should be made with electronic grade and slope control. Not screed thickness control screws.
- ☐ Head of material in auger chamber held consistent.
- ☐ Feed augers turning slowly and consistently (not stop/start)
- ☐ Minimal raking/luting on the mat and joints.
- ☐ Minimal paver stops. Paver/MTV pickup truck on fly.
- □Rollers move in a continuous fashion and only stop on cooler portion of mat transversely.

Take-A- Ways

- Paver paves, Screed shapes, Grade Control delivers ride and thickness.
- Rollers Compact, Preserves ride, & Create final air void structure
- Many parts interact choices have to be made.
 - Do you want ride?, thickness?, density/air voids?
- Competing Constraints cause conflicts.
 - Know what impacts the other.
 - Provide tools to improve construction, ride, density. Lower your maintenance costs and improve your PMIS score card.

